Parlez-vous français?

Nope, me neither! I speak some very rusty Japanese and a little Swedish, but can not claim to “parle français” myself. Despite this, I was a co-author on a French language article published last week by the journal Médecine/Sciences.

The article, L’origine phylogénétique des doigts, can be translated as “The phylogenetic origin of fingers”, and covers our work on the fish with fingers, Elpistostege. Our first article was published in Nature earlier this year, and you can read my original blog post about it too.

This new article was co-authored with Prof. Richard Cloutier and Prof. John Long and details our discovery of the first occurrence of digits in a fish, even though the pectoral fin of Elpistostege still retains primitive features, such as the presence of rays. The specimen is just the fourth Elpistostege fossil known. It was discovered by Richard and his team in 2010 in Miguasha, Quebec, Canada, and is about 375 million years old.

So if you’re a Francophile, Gallophile, or just love fish fingers, get reading about good ol’ Elpistostege!

Artist’s impression of Elpistostege by the very talented Chase Stone, image originally published in Scientific American

*** EDIT: more Elpi! This week a popular science article (in English) was published by The Science Breaker, a website that publish short lay-summaries (“breaks“) of scientific research. Our article “Elpistostege: a fish with legs or a tetrapod with fins?“, was again written by Richard, John and myself.

Alice, John and Richard in Adelaide during 2019

A million times brighter than the sun?

Have you heard of something called a synchrotron? Did you know they can produce light more than a million times brighter than the sun? Did you know we have one here in Australia?

A synchrotron is a very large machine – so large it needs its own purpose built building (about the size of a footy oval) to house it! It accelerates electrons around a ring super, super fast (almost to the speed of light) before shooting them off down “beamlines” to produce extremely powerful light. (Sharks with freaking laser beams, anyone?)

In my research I harness this powerful light like a supercharged X-ray machine to look inside ancient fossils. I’ve used the synchrotron in Melbourne, run by the Australian Nuclear Science and Technology Organisation (ANSTO) a few times now, as well as ESRF in Grenoble, France.

This machine creates a series of scans (tomograms) of an object based on the density of the various materials contained within (this is similar but distinct from neutron tomography). We can then create a 3D dataset from the resultant stack of images, and make 3D computer models from these scans for use in our research to look inside bone, virtually reconstruct a skeleton or run biomechanical analyses, for example.

Together with some of my colleagues, including visiting researcher Dr Tom Challands, I was due to visit the synchrotron in April this year. However, we all know COVID wreaked havoc with all the best laid plans… so our beamtime had been rescheduled for December… but alas, we were still not allowed to travel interstate to attend our experiment!

Thankfully, an incredibly generous colleague and collaborator, Dr Joseph Bevitt, came to our rescue. He drove one of our specimens from Sydney to Melbourne, collected some specimens on loan from the Melbourne Museum, and then scanned our material for us with the ANSTO beamline scientist, Anton Maksimenko.

Dr Joseph Bevitt at the Australian Synchrotron (Dec 2020)

Access to the ANSTO beamtime is absolutely invaluable for my research. It’s incredibly exciting to be able to use its state-of-the-art scanning technology to look inside rare and ancient fossils that are hundreds of millions of years old. I can’t wait to see the results from the scans made during this most recent visit…. watch this space!